WINONA STATE UNIVERSITY
PROPOSAL FOR GENERAL EDUCATION PROGRAM COURSES

Department: GEOGRAPHY
Course No.: 212
Course Name: PHYSICAL GEOGRAPHY
Credits: 3
Prerequisites:

GEP Goal Area(s):*

CORE GOAL AREAS
☐ Goal 1: Communication
☐ Goal 3: Natural Science
☐ Goal 4: Mathematics/Logical Reasoning
☐ Goal 5: History and the Social and Behavioral Sciences
☐ Goal 6: The Humanities and Fine Arts

THEME GOAL AREAS
☐ Goal 7: Human Diversity
☐ Goal 8: Global Perspective
☐ Goal 9: Ethical and Civic Responsibility
☐ Goal 10: People and the Environment

* Courses may be submitted for up to two Goal Areas.

Additional Requirement Categories (list number of credits desired in appropriate category):

☐ Intensive:

1. Writing
2. Oral Communication
3a. Mathematics/Statistics
3b. Critical Analysis

☐ Physical Development and Wellness

Provide information as specified in the previous directions.

Attach a General Education Program Approval Form.

Department Contact Person for this Proposal:

JERRY GERLACH
Name (please print)

X9423
Phone

JGERLACH@WINONA.EDU
e-mail address

[Revised 9-6-11]
WINONA STATE UNIVERSITY
GENERAL EDUCATION PROGRAM APPROVAL FORM

Routing form for General Education Program Course approval.

<table>
<thead>
<tr>
<th>Department Approval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mary Norman</td>
</tr>
<tr>
<td>Department Chair</td>
</tr>
<tr>
<td>MARCH 18, 2013</td>
</tr>
<tr>
<td>Date</td>
</tr>
<tr>
<td><a href="mailto:MNORMAN@WINONA.EDU">MNORMAN@WINONA.EDU</a></td>
</tr>
<tr>
<td>e-mail address</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dean's Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
</tr>
<tr>
<td>No*</td>
</tr>
<tr>
<td>Dean of College</td>
</tr>
<tr>
<td>4-4-13</td>
</tr>
</tbody>
</table>

*If the dean does not approve the proposal, a written rationale should be provided to the General Education Program Subcommittee.

<table>
<thead>
<tr>
<th>GEPS Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approved</td>
</tr>
<tr>
<td>Disapproved</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chair, General Education Program Subcommittee</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A2C2 Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approved</td>
</tr>
<tr>
<td>Disapproved</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chair of A2C2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Faculty Senate Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approved</td>
</tr>
<tr>
<td>Disapproved</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>President of Faculty Senate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Academic Vice President Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approved</td>
</tr>
<tr>
<td>Disapproved</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Academic Vice President</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Decision of President</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approved</td>
</tr>
<tr>
<td>Disapproved</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>President</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
</tr>
</tbody>
</table>

Please forward to Registrar.

<table>
<thead>
<tr>
<th>Registrar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date entered</td>
</tr>
</tbody>
</table>

Please notify department chair via e-mail that curricular change has been recorded.

[Revised 10-22-12]
GEOG 212: Physical Geography

Course Outline

I. Physical Geog: Earth Environments and Systems
   a. Study of Geography
      1. Physical Geography
      2. Geographic technology and tools
      3. Perspectives in Physical Geography
      4. Physical Science Perspective
      5. Environmental Perspective
      6. Equilibrium in Earth Systems

II. Representations of Earth
   a. Maps and Location on Earth
      1. Earth shape and size
      2. Globes and great circles
      3. Longitude and Latitude
   b. Geographic Grid
      1. Parallels and Meridians
      2. Longitude and Time
      3. International Date Line
   c. Maps and Map Projections
      1. Advantages of maps
      2. Limitations of maps
   d. Modern Map Making
      1. Geographic Information Systems

III. Solar Energy and Earth/Sun Relationships
   a. Solar System
      1. Planets
   b. Earth/Sun System
      1. Sun and solar energy
      2. Solar energy and Atmosphere dynamics
      3. Sun Angle and Insolation
      4. Sun Angle, Duration, and Insolation
      5. Ana lemma

IV. Atmosphere, Temperature, and Earth Energy Budget
   a. Characteristics of the Atmosphere
      1. Atmospheric Composition
      2. Environmental Issues
   b. Energy Transfer
      1. Radiation
      2. Conduction
      3. Convection
      4. Advection
      5. Latent Heat Exchange
   c. Earth Energy Budget
      1. Heating Atmosphere
      2. Energy Balance
   d. Air temperature
      1. Temperature and Heat
      2. Short-term Temperature Variations
      3. Vertical Temperature Distributions
4. Controls of Earth's Surface Temperature
5. Annual Temperature Changes

e. Weather and Climate
f. Complexity of Earth's Energy Systems

V. Atmospheric Pressure, Winds, and Circulation Patterns
a. Variations in Pressure
   1. Pressure and Elevation
   2. Horizontal Pressure
b. Basic Pressure Systems
   1. Convergence and Divergence
c. Winds
   1. Winds at Pressure Gradients
   2. Coriolis Effect
   3. Winds, Cyclones and Anticyclones
d. Global Pressure Systems
   1. Global Pressure Balls
   2. Seasonal Pressure Difference
e. Global Wind Systems
   1. Model of Atmospheric Circulation
   2. Winds and Latitude
   3. Migration of Winds
   4. Upper Air Winds at the Jet Stream
f. Regional and Local Winds
   1. Monsoon Winds
   2. Local Winds
g. Ocean Atmospheric Interactions
   1. Ocean Currents
   2. El Niño
   3. North Atlantic Oscillation

VI. Humidity, Condensation, and Precipitation
a. Hydrologic Cycle
b. Water in the Atmosphere
   1. Water Budget
   2. Humidity and Saturation
c. Source of Atmospheric Moisture
   1. Evaporation and Transpiration
   2. Fog
   3. Dew and Frost
   4. Clouds
d. Adiabatic Heating and Cooling
   1. Instability and Stability
e. Precipitation
   1. Forms of Precipitation
f. Distribution of Precipitation
   1. Over time
   2. Horizontally
   3. Latitudinal
g. Precipitation Variability

VII. Air Masses and Weather Systems
a. Air Masses
   1. Modification and Stability
   2. North America Air Masses
b. Fronts
   1. Cold
   2. Warm
   3. Stationary

c. Atmospheric Disturbances
   1. Cyclones and Anticyclones
   2. Mid-latitude Cyclones
   3. Hurricanes
   4. Thunderstorms
   5. Tornadoes
   6. Snow storms and Blizzards
   7. Tropical Storms

VIII. Global Climate and Climate Changes
   a. Classify in Climates
      1. Thornthwaite System
      2. Köppen System
   b. Climatic Regions
   c. Climates of the Past
      1. Ice Ages
   d. Climate Changes and Causes
      1. Orbital Variations
      2. Ocean Changes
      3. Landmass Changes
      4. Impact Events
      5. Atmospheric Changes
   e. Predicting Future Climates
      1. Global Warming

IX. Low Latitude and Arid Climates
   a. Tropical Wet Climates
      1. Rain Forest
      2. Savanna
      3. Monsoon
   b. Arid Climates
      1. Desert
      2. Semi-arid

X. Mid-latitude, Polar and Highland Climates
   a. Subtropical
      1. Mediterranean
      2. Marine West Coast
      3. Humid Subtropical
   b. Continental Climates
      1. Continental Hot Summers
      2. Continental Warm Summers
      3. Subarctic
   c. Polar Climate
      1. Tundra
      2. Ice-Sheet
   d. Highland
   e. Human Activities in Climate

XI. Biography of Soils
   a. Ecosystems
      1. Major Components
2. Energy Flows
b. Human Impact on Ecosystems
c. Major Soil Components
   1. Inorganic Matter
   2. Organic Matter
   3. Soil Water
d. Factors Effecting Soil Formation
   1. Parent Material
   2. Organic Activates
   3. Climate
   4. Land Surface
   5. Time
e. Soil Classification
   1. Lateralization
   2. Calcification
   3. Podzolization
XII. Earth Materials and Plate Tectonics
a. Earth’s Structure
   1. Core
   2. Mantle
   3. Crust
b. Minerals
c. Rocks
   1. Igneous
   2. Sedimentary
   3. Metamorphic
   4. Rock Cycle
d. Plate Tectonics
   1. Continental Drift
   2. Seafloor Spreading
   3. Movement
   4. Hot Spots
e. Growth of Continents
XIII. Tectonic and Volcanic Processes
a. Land forms
b. Tectonic Forces and Rock Structure
   1. Compression
   2. Tension
   3. Earthquakes and Hazards
c. Igneous Processes
   1. Volcanic Eruptions
   2. Volcanic Landforms
d. Human Actions
XIV. Weathering and Mass Wasting
a. Weathering
   1. Physical
   2. Chemical
b. Variability in Weathering
   1. Rocks
   2. Climate
c. Mass Wasting
   1. Slow
2. Fast
   d. Human Actions

XV. Underground Water and Karst
   a. Nature of Underground Water
   b. Groundwater Use
   c. Karst Landforms
      1. Limestone Caves

XVI. Fluvial Processes
   a. Streams and Runoff
      1. Drainage Basins
   b. Flow Properties
   c. Fluvial Processes
      1. Stream Erosion
      2. Stream Transportation
      3. Stream Deposition
   d. Fluvial Landscapes
      1. Upper Course
      2. Middle Course
      3. Lower Course
      4. Deltas
   e. Stream Hazards and People

XVII. Arid Landforms and Winds
   a. Surface Runoff
      1. Erosion
      2. Deposition
   b. Wind Erosion
   c. Wind Deposition
   d. Sand Dunes
   e. Loess Deposits

XVIII. Glacial Systems
   a. Glacier Formation
   b. Alpine Glaciers
      1. Erosion
      2. Deposition
   c. Continental Glaciers
      1. Existing Continental Glaciers
      2. Pleistocene Glaciation
      3. Glaciers and Landforms

XIX. Coastal Processes
   a. Coastal Zone
   b. Origin of Waves
      1. Tides
      2. Tsunamis
      3. Winds
   c. Coastal Landforms
      1. Erosion
      2. Deposits
   d. Islands and Coral Reefs
<table>
<thead>
<tr>
<th>Student Competencies</th>
<th>Learning Activities</th>
<th>Assessment Plan</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Goal 10: People and the Environment</strong></td>
<td>Students will learn through lectures, class discussion, reading, and videos about the interrelationship of the physical factors causing variations in activities creating differences in the current earth’s surface and locations.</td>
<td>Students will be tested on this information. Exams will be objective with some short answer questions. Students will also be evaluated on short out of class problem solving assignment. The out of class assignments will allow them to classify information such as time, sun angle, humidity, and other pertinent topics.</td>
</tr>
<tr>
<td>Students will be able to: (a) explain the function of various natural ecosystems and how humans have adapted to them.</td>
<td>Students will learn the relationships between climatic changes and the altering of the atmosphere through human activities. The effects of global warming and variations will be presented using readings, lectures, and discussions of class presented audio visual material.</td>
<td>The students will be assessed through the use of exams in objective and essay formats.</td>
</tr>
<tr>
<td>Students will be able to: (b) explain the interrelationships of biophysical and social/cultural systems.</td>
<td>Students will note the role various social groups have had making the environment cleaner and safer. Material will be presented through lectures, class discussions, and readings that demonstrate changes made to retard harmful effects of environmental damage.</td>
<td>Students will be assessed through objective and essay exams.</td>
</tr>
<tr>
<td>Students will be able to: (c) explain how institutional arrangements have been evolving to deal with environmental problems.</td>
<td>Students will use data to determine the role fossil fuels and regulations have on attempting to slow environment damage. Material will be presented through lectures, reading, and discussions to demonstrate the effects of using less fossil fuel have on the environment.</td>
<td>Students will be assessed through objection and short answer essay exams.</td>
</tr>
<tr>
<td>Students will be able to: (d) evaluate the major critical environmental issues by demonstrating the effect of society's living standards has on the environment.</td>
<td>Lecture material and readings, plus class discussion will be used to cite the impact different energy uses have on the environment. Building regulations will be discussed and costs included in using the best methods for society to lessen the impact on the natural ecosystem.</td>
<td>Students will be evaluated by using objective and short answer exams.</td>
</tr>
<tr>
<td>Students will be able to: (e) assess alternate solutions to environmental problems.</td>
<td>Alternatives to current unfriendly aspects of human societies’ effects on the environment will be presented in lecture, class discussions, and readings.</td>
<td>Students will be evaluated by presenting these information in an essay presentation.</td>
</tr>
<tr>
<td>Students will be able to: (f) defend the actions they take on environmental issues.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>